a 2d path representation, comprising of points, lines, and cubes, similar to the html5 2d canvas api. It extends CurvePath.

Hierarchy

Constructors

Properties

arcLengthDivisions: number

This value determines the amount of divisions when calculating the cumulative segment lengths of a curve via .getLengths. To ensure precision when using methods like .getSpacedPoints, it is recommended to increase .arcLengthDivisions if the curve is very large.

Default

200

autoClose: boolean

Default

false

currentPoint: THREE.Vector2

Default

new THREE.Vector2()

curves: Curve<THREE.Vector2>[]

Default

[]

type: string

Default

'Path'

Methods

  • Parameters

    • aX: number
    • aY: number
    • aRadius: number
    • aStartAngle: number
    • aEndAngle: number
    • aClockwise: boolean

    Returns Path

  • Parameters

    • aX: number
    • aY: number
    • xRadius: number
    • yRadius: number
    • aStartAngle: number
    • aEndAngle: number
    • aClockwise: boolean
    • aRotation: number

    Returns Path

  • Parameters

    • aX: number
    • aY: number
    • aRadius: number
    • aStartAngle: number
    • aEndAngle: number
    • aClockwise: boolean

    Returns Path

  • Parameters

    • aCP1x: number
    • aCP1y: number
    • aCP2x: number
    • aCP2y: number
    • aX: number
    • aY: number

    Returns Path

  • Returns Path

  • Returns void

  • Parameters

    • aX: number
    • aY: number
    • xRadius: number
    • yRadius: number
    • aStartAngle: number
    • aEndAngle: number
    • aClockwise: boolean
    • aRotation: number

    Returns Path

  • Parameters

    • json: object

    Returns Path

  • Returns number[]

  • Get total curve arc length

    Returns number

  • Get list of cumulative segment lengths

    Parameters

    • Optional divisions: number

    Returns number[]

  • Returns a vector for point t of the curve where t is between 0 and 1 getPoint(t: number, optionalTarget?: T): T;

    Parameters

    Returns THREE.Vector2

  • Returns a vector for point at relative position in curve according to arc length getPointAt(u: number, optionalTarget?: T): T;

    Parameters

    Returns THREE.Vector2

  • Get sequence of points using getPoint( t ) getPoints(divisions?: number): T[];

    Parameters

    • Optional divisions: number

    Returns THREE.Vector2[]

  • Get sequence of equi-spaced points using getPointAt( u ) getSpacedPoints(divisions?: number): T[];

    Parameters

    • Optional divisions: number

    Returns THREE.Vector2[]

  • Returns a unit vector tangent at t. If the subclassed curve do not implement its tangent derivation, 2 points a small delta apart will be used to find its gradient which seems to give a reasonable approximation getTangent(t: number, optionalTarget?: T): T;

    Parameters

    Returns THREE.Vector2

  • Returns tangent at equidistance point u on the curve getTangentAt(u: number, optionalTarget?: T): T;

    Parameters

    Returns THREE.Vector2

  • Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance

    Parameters

    • u: number
    • distance: number

    Returns number

  • Parameters

    • x: number
    • y: number

    Returns Path

  • Parameters

    • x: number
    • y: number

    Returns Path

  • Parameters

    • aCPx: number
    • aCPy: number
    • aX: number
    • aY: number

    Returns Path

  • Parameters

    Returns Path

  • Returns object

  • Update the cumlative segment distance cache

    Returns void

  • Deprecated

    since r84.

    Parameters

    • constructorFunc: (() => void)
        • (): void
        • Returns void

    • getPointFunc: (() => void)
        • (): void
        • Returns void

    Returns (() => void)

      • (): void
      • Deprecated

        since r84.

        Returns void

Generated using TypeDoc